Quantum Computing

"Nature isn't classical and if you want to make a simulation of nature, you'd better make it quantum"

Richard Feynman - Theoretical Physicist

engineer of the future

Powered by **Krinf.tech**

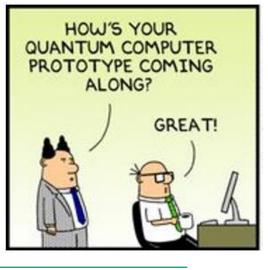
engineerofthefuture.rinf.tech

What will I be talking about?

What is quantum, where is it in nature, what is its history?

Quantum applicability in major areas of development

Key principals in quantum mechanics that apply in quantum computers


Quantum vs Classical computing, quantum supremacy and hybrid solutions

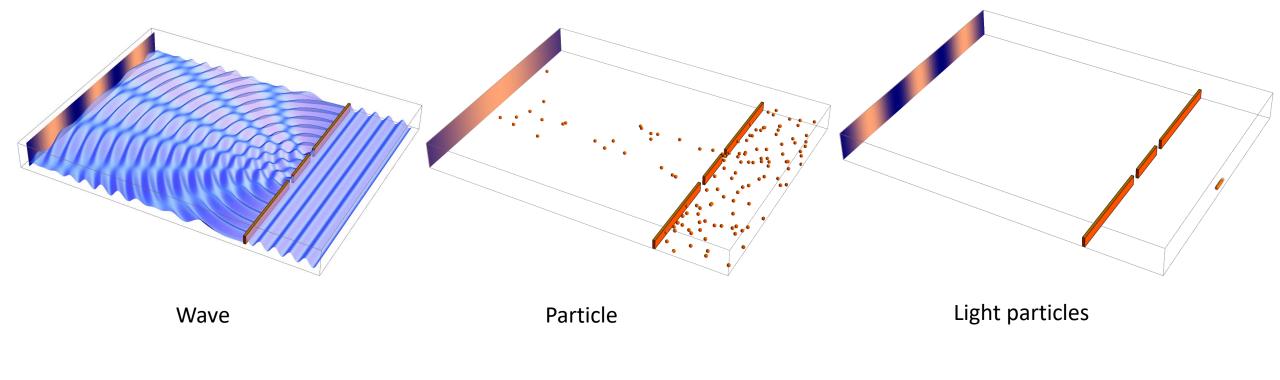
Quantum race of companies and the current obstacles

Roadmap of major companies

Quantum readiness

Q&A Session

Mentimeter



What is **Quantum** mechanics?

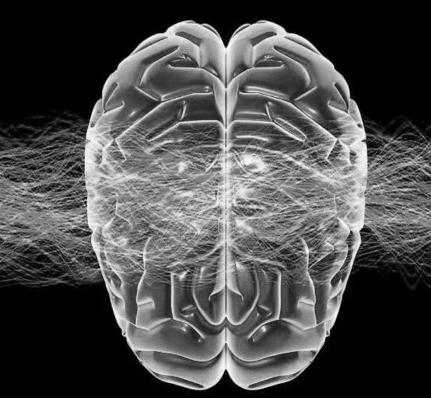
Newton's laws do not apply at subatomic level 🟵

Matter and light can behave both like waves and particles - wave-particle duality

The double slit experiment

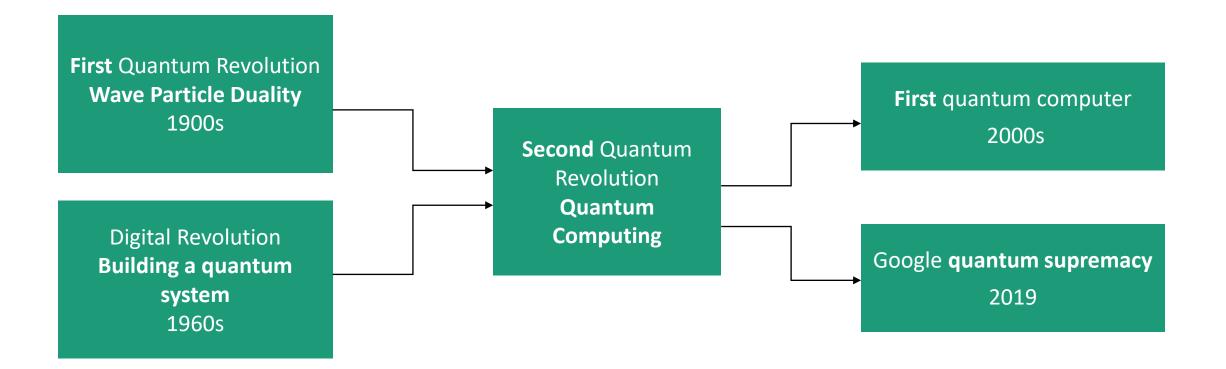
Where can we find Quantum in nature?

Birds

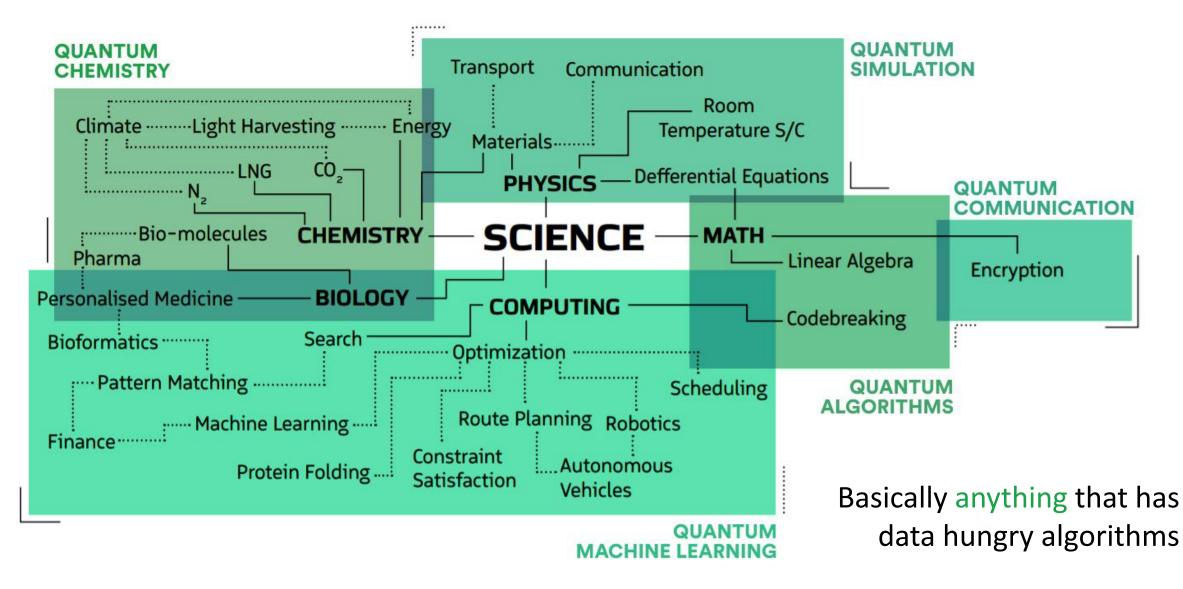

Navigate sensing the magnetic field : quantum entanglement in cryptochrome in their eyes

The Brain

The mind has quantum structures in superposition that give rise to <u>consciousness</u>


<u>Sir Roger Penrose theory (Nobel Prize winner)</u>

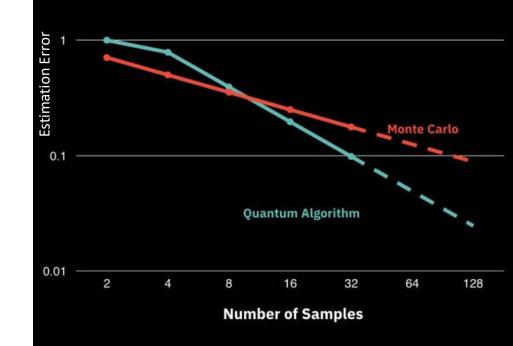
Brief History of The Quantum Realm



Second Revolution is ongoing!

Detailed Timeline of Quantum Evolution

Quantum Computing IMPACT Across Industries



Quantum in Finance

- Accurate Risk management analysis in quantitative finance
- Dynamic portfolio optimization
- Pricing financial derivatives at quadratic speedup with a quantum Monte Carlo algorithm
- Fast Fourier Transformation speedup with Quantum Fourier Transformation

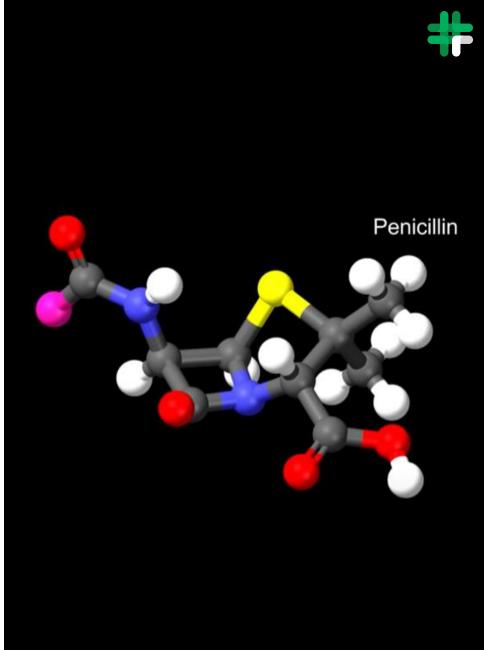
Quantum Risk Analysis Quadratic Speedup over Monte Carlo

IBM Monte Carlo quantum algorithm

Quantum Communications

<u>Quantum NETWORKING</u> with <u>Quantum key</u> <u>distribution</u> (QKD) that enables 2 parties to produce a unique shared random bit string used as a key to encrypt and decrypt messages.

Avoiding the Quantum SECURITY Threat of breaking private keys – with the <u>Post-quantum</u> <u>cryptography</u>


QUANTUM in Chemistry Using ML and Simulations

Highly advanced data modelling: molecular & complex molecular interaction simulations, proteins folds, new drug design

- <u>ProteinQure</u> is already designing drugs
- Discovery of fertilizers and new batteries

Understanding the oceans, climate and weather modelling

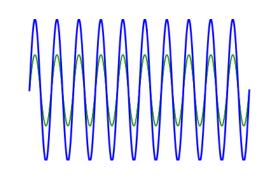
Fast and accurate forecasting of natural events such as earthquakes and tsunamis

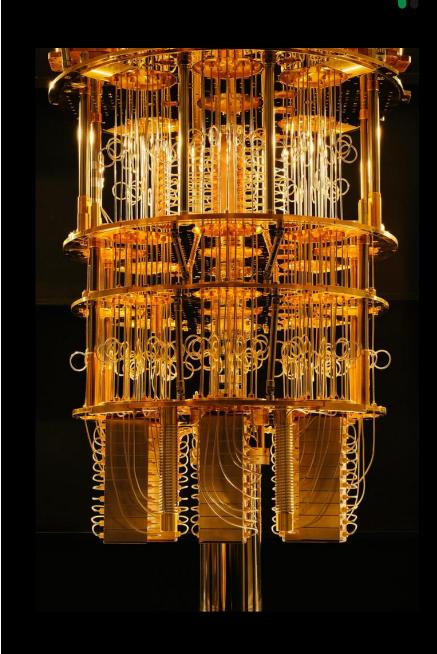
Quantum in Mobility

Volkswagen uses quantum computers in practice

BMW is also preparing for the <u>Quantum Era</u>

- Quantum ML
 - Solutions for individual road users logistics
 - Control possibilities for urban traffic planning
- Chemistry: Major advances in battery technology

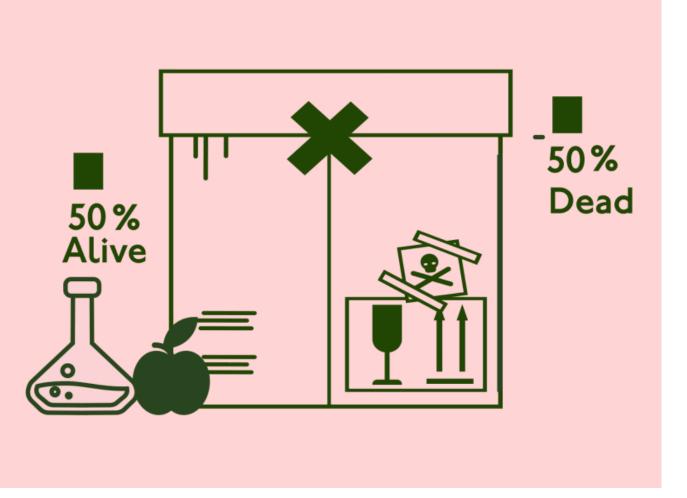

What is Quantum computing about?


Quantum computers use qubits - electrons, ions or photons

- Isolating the qubits in a controlled quantum state
- Calculate the wave function equation of a quantum object: <u>Schrodinger's equation</u>

Qubits have quantum mechanic properties :

- SUPERPOSITION
- ENTANGLEMENT
- DECOHERENCE



Superposition

The ability of a quantum system to be in multiple states at the same time

A system can be in both 0 and 1 state - until measured

A linear combination of all possible states

<u>Schrodinger's cat</u> can be both **dead** and **alive**

Entanglement

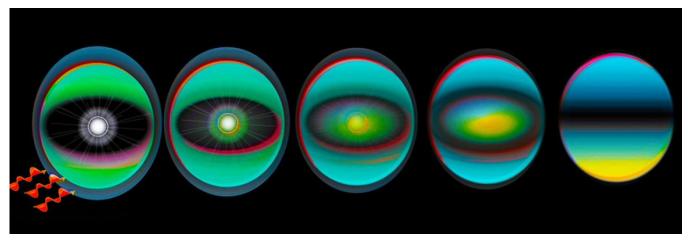
The ability of quantum particles to correlate their measurement results with each other no matter the distance

If we entangled 2 qubits we have a single quantum state:

- Both qubits are in superposition
- One qubit state changes according to the other

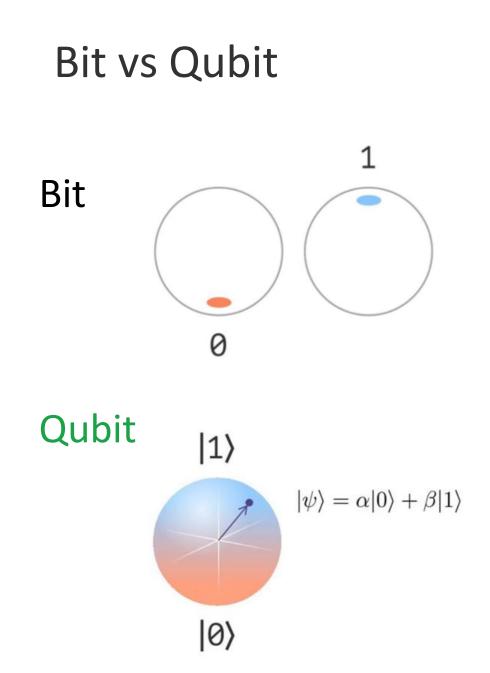
"Spooky action at a distance" - Albert Einstein

#


Decoherence

Losing information due to :

- The quantum system being fragile and not being perfectly isolated
- Noise interference even from
 <u>Cosmic rays</u>
- Coherence time is limited even without noise


Error correction – correcting loss of information by perfecting the hardware

Coherence time: How long can a quantum state live?

Environmental Disruptions NOISE

Quantum Exponential power

1 qubit = 2 bits 2 qubits = $2^2 = 4$ bits

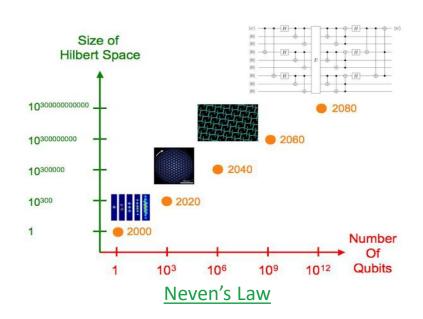
... n qubits = 2ⁿ bits

Quantum Parallelism

Exponential Computational Power Quantum Supremacy

There are $10^{90} \sim 2^{300}$ known particles in the universe :

- As many numbers to describe the state of 300 qubits
- If all 300 states are exploited at the same time you can perform a computation that is impossible on classical computers

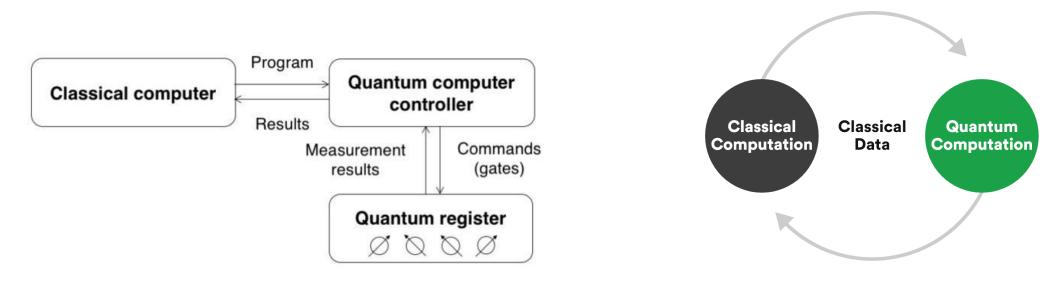


Quantum vs Classical Computers

The smallest transistors are only **2nm wide** (6 – 10 atoms) and is not feasible to create smaller ones

Moore's law for classical computers is replaced by Neven's law for quantum computers

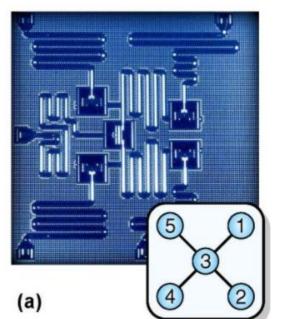
Classical computers will not be replaced, there are many problems that can be solved better on classical computers


Moore's Law

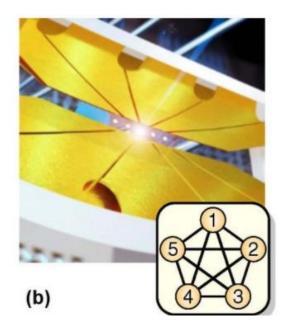
Hybrid Quantum - Classical Computing

The QPU (Quantum Processor Unit) is dependent on the CPU for reading the data – coprocessor - same as GPU to CPU

Utilizing both classical and quantum hardware, sharing classical data between them, to try to exploit the best of both worlds for each computing model.



The Quantum RACE


A qubit is built using quantum mechanics principles by combining different materials and architectures:

- Superconducting (a) <u>IBM</u>, <u>Google</u> and <u>Rigetti</u>
 - Quantum annealers different computation/specialized <u>D-wave</u>
- Trapped ions (b) <u>IonQ</u> and <u>Honeywell</u> (Oxford)
- Photonics Photon qubits : Psi Quantum, Xanadu, NU Quantum
- Neutral (Cold) atoms ColdQuanta (UK), Pasqal
- Topological qubits <u>Microsoft</u>

LIST of all companies involved - Comparison between architectures

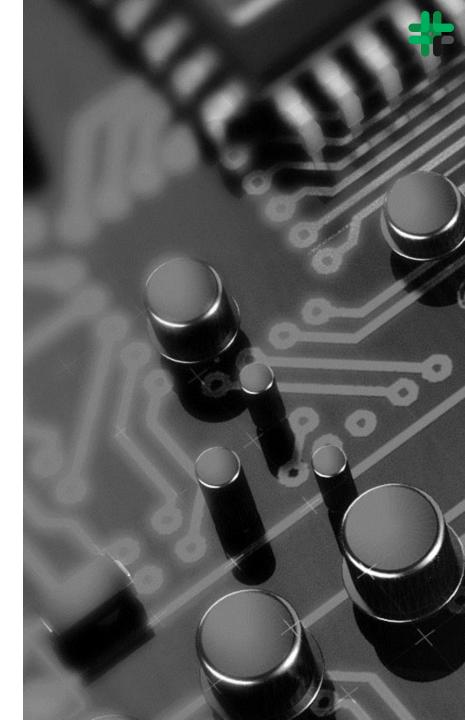
<u>Why</u> different?

RoadMap for Quantum computers

IONQ

Honeywell

Scaling IBM Quantum technology					IBM
IBM Q System One (Released)		(In development)		Next family of IBM Quantum systems	
2019	2020	2021	2022	2023	and beyond
27 qubits Falcon	65 qubits Hummingbird	127 qubits Eagle	433 qubits Osprey	1,121 qubits Condor	Path to 1 million qubits and beyond Large scale systems
Key advancement	Key advancement	Key advancement	Key advancement	Key advancement	Key advancement
Optimized lattice	Scalable readout	Novel packaging and controls	Miniaturization of components	Integration	Build new infrastructure, quantum error correction


Where is Quantum now?

Current state is **NISQ** - Noisy-Intermediate Scale Quantum

All architectures are affected by **decoherance**:

- Noise interference that needs error correction
- Complicated cooling the systems to 0.01-0.05K colder than interstellar space (2.7K)
- \rightarrow Large scaling is very challenging

Future state will be **QEC** – Quantum Error Correction that enables building large scale computers in spite of noise

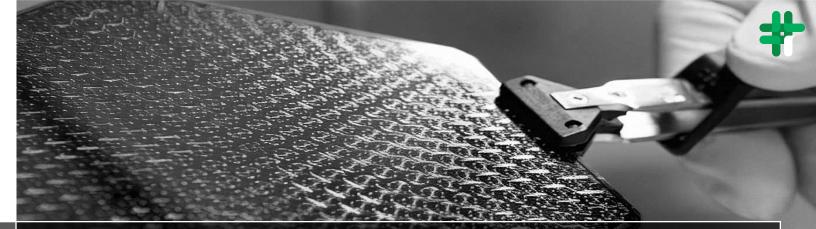
Preparing for the Quantum Era – Quantum READY

- Building partnerships
- Education, training and communities
- Creating teams of specialists
- Following the innovation and doing R&D : Quantum use cases and algorithms
- Skills required for Quantum coding -<u>Quantum Developers</u>
 - Quantum mechanics
 - Math's
 - Programming

My motivation ?

Finding the secret to Telomere's regeneration and preservation

References


- 1. IBM strategy: https://www.ibm.com/thought-leadership/institute-business-value/report/quantumstrategy
- 2. France: https://www.pwc.fr/fr/assets/files/pdf/2019/11/en-france-pwc-point-of-view-quantum-computing-2019.pdf
- 3. Accenture 2020: https://www.accenture.com/_acnmedia/PDF-54/Accenture-807510-Quantum-Computing-RGB-V02.pdf
- 4. Financial Use Cases: https://www.nri.com/-/media/Corporate/en/Files/PDF/knowledge/publication/lakyara/2021/03/lakyaravol335.pdf?la=en&hash=B15A339C9300DCB9CCCA6EC58C662622606FD8EE
- 5. Finance: https://www.supertrends.com/quantum-computing-in-banking-and-finance-threat-or-opportunity/
- 6. UK: https://www.ukfinance.org.uk/system/files/Quantum-Computing-report-FINAL.pdf
- 7. PWC strategy 2019: https://www.pwc.fr/fr/assets/files/pdf/2018/04/pwc-smart-automation-fs-pour-aller-au-dela-des-poc.pdf
- 8. EU: https://qt.eu/about-quantum-flagship/
- 9. EU projects: https://www.quantera.eu/calls-for-proposals/call-2019
- 10. DE: https://www.munich-quantum-valley.de/
- 11. https://www.elibrary.imf.org/view/journals/001/2021/071/article-A001-en.xml
- 12. https://www.scientific-computing.com/analysis-opinion/quantum-computing-opens-new-possibilities-research
- 13. Al: https://www.pewresearch.org/internet/2021/06/16/4-could-a-quantum-leap-someday-aid-ethical-ai/
- 14. Cern OpenLab: https://openlab.cern/quantum
- 15. Google: https://quantumai.google/
- 16. Google cirq: https://quantumai.google/cirq/start
- 17. Nature: https://www.weforum.org/agenda/2018/11/3-natural-mysteries-that-could-be-explained-by-quantum-physics/
- 18. Nature: https://www.scientificamerican.com/article/schroedingers-bacterium-could-be-a-quantum-biology-milestone/
- 19. https://www.freecodecamp.org/news/chihuahua-or-muffin-my-search-for-the-best-computer-vision-api-cbda4d6b425d/
- 20. Cold Atom: https://www.nextplatform.com/2021/07/16/coldquanta-uses-cold-atoms-to-build-a-quantum-computing/
- 21. Cambridge Chip: https://www.cambridgeindependent.co.uk/business/world-first-operating-system-breakthrough-puts-quantum-compu-9204744/?fbclid=IwAR3SQgEY_jG3bteJ91IyGINjrH8rBGtBmScmuqZraAurxS5YeI6KAQGKuxk
- 22. Quantum Computing for Location Determination: https://arxiv.org/pdf/2106.11751.pdf
- 23. Andrea Morello silicon quantum: https://www.youtube.com/watch?v=7susESgnDv8&t=1636s&ab_channel=SibosTV
- 24. Decoherence: https://iotpractitioner.com/quantum-computing-series-part-8-decoherence/

Q&A

Mentimeter :

Where are we now? Current Innovation 2021

CHALLENGES

Cooling systems

Quantum simulators

BREAKTHROUGHS

Decoherence – Error	detecting and
correction	

Detect and Correct Quantum Errors in Real Tim

<u>Time Crystals</u> <u>Silicone 3 spin entaglement</u>
Emergent quantum mechanics (EmQM)
Cold Atom Quantum Technology

Increasing number of qubits (scalability) 1000 QPU - 2021 -> 1 million QPU by2029

256 qubit simulation

Creating quantum algorithms

Implemented quantum algorithms